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THE ROLE OF EFFECTS DUE TO NONLOCALITY AND DELAY

IN TRANSFER PROCESSES IN MICROSTRUCTURED MEDIA

UDC 535.529: 541.64V. I. Popov

The role of effects due to nonlocality and delay in irreversible transfer processes, which arise after
taking into account nonequilibrium phenomena in the medium structure is studied. By an example
of the isothermal response of the medium to an instantaneous perturbation of shear velocity, the
evolution of stress-tensor components is studied. It is shown that, in a medium of constant density,
its strained state is determined by the tangent shear stress, by the first and second differences of
normal stresses, and by the relaxation of these differences to their equilibrium values in an oscillatory
process with a decaying amplitude. In this case, thermodynamic variables of state (pressure tensor
and internal energy) are functions of shear velocity and time. It is found that the approximation of
locally equilibrium thermodynamics is valid for microstructured media if their relaxation times are
an order of magnitude shorter than the characteristic time of the problem.

There are many types of liquid flows for which adequate modeling of thermomechanical transfer processes
is possible only with allowance for the actual number of microstructure states.

A model for closing the conservation laws for matter and momentum in chemically active microstructured
media was proposed in [1]. This model includes evolution of a continuous internal parameter of the medium due
to the change in its microstate, or, more specifically, in the first moments of the local distribution function of
the microscopic probability density of some kinetic elements of the flow during a nonlocal interaction between
shear, entropy, and diffusion forces. The microstate of the medium has an equilibrium scale of order æD, and the
thermodynamic functions that depend on the initial value of the internal parameter are governed by the behavior
of this parameter in the course of medium relaxation to its equilibrium state over a certain time scale æ/τ∗ (æ is
the characteristic relaxation time, D is the diffusivity, and τ∗ is the characteristic time of the nonequilibrium
macroscopic process).

The microstructure of the medium is treated as a system of uniform Brownian effective friction nodes
connected together by elastic subchains immersed into a structureless liquid. This choice of the medium structure is
motivated by the fact that, under shear conditions, this structure displays such characteristic macroscopic properties
as viscosity and elasticity.

The relaxation of the internal parameter to its equilibrium value determines the character of nonequilibrium
transfer and the corresponding flows in the system as a whole.

In the approach where the thermodynamic theory of irreversible processes describes not only nonequilib-
rium transfer processes but also such nonequilibrium phenomena as medium-microstructure variability, including
configurational changes and distortions, the principle of local thermodynamic equilibrium is abandoned.

It is known that this principle, normally used to describe sufficiently slow flows, although admits nonequilib-
rium [2] (dependence of macroscopic variables of state on the time-space point coordinate, but in small space scales
for which conservation laws are written), restricts possible interrelations between these variables to equilibrium-
thermodynamics relations of the form f(P, ρ, T ) = 0. A typical feature of microstructured media is a nonlocal
mechanism of interfield interactions: the pressure, temperature, and deformation velocity at a time-space point de-
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pend on an internal parameter that relaxes in a vicinity of this point. For this reason, the thermodynamic variables
even in the small are not the same function of state as in the equilibrium state: the microstructure has not enough
time to adapt itself to the new equilibrium state. In studying the dynamics of such systems, the time dependence
between thermodynamic variables must be taken into account. The nonlocality of thermodynamic variables is re-
sponsible for the transition of the macroscopic system into the new equilibrium state with different relaxation times
unique for each individual variable. For this reason, the delayed processes in momentum, heat, and mass transfer
or, in other words, in mechanical and heat- and mass-transfer processes, manifest themselves in some “delay” of
fluidity, elasticity, thermal conductivity, or give rise to elastic or inertial turbulence.

Below, an example of the isothermal response of a constant-density medium to its instantaneous perturbation
from the state at rest to a state with v̇ij = G = const is considered (G is the shear-velocity gradient). Dependences
for components that characterize the change in the microstate of the medium are derived, and the evolution of the
experimentally measurable component of the shear-stress tensor τ12(t) = τ21(t), the evolution of differences between
normal stresses σ1(t) = P11 − P22 (the first difference) and σ2(t) = P22 − P33 (the second difference), and also the
change in the heat content of the unit volume of the medium in time, are studied.

In contrast to [1], variations of dynamic variables of the system are considered with allowance for kinetic
rigidity of the medium microstructure [3]. In this case, a force in the form f4 = αζxj ėij is introduced in addition
to the above-listed forces. Here α is the kinetic rigidity (the resistance of the microstructure to shear strains),
ėij = 0.5G is the symmetrical part of the shear-velocity gradient tensor, xj ėij is the shear-velocity vector, and ζ is
the viscous friction of the nodes (effective kinetic elements) with the structureless liquid.

In the problem of interest, the dynamic equation, the total-stress tensor under an assumption that τij � 2µėij
(τij is the nondeviatoric excess pressure, 2µėij is the viscous-stress tensor, and µ is the medium viscosity, which
can be determined based on the known kinematics), and the rheokinetic expression for a nonreacting medium have
the form [3, 4]:

∂jPij = 0 (Pij = −p∗δij + τij); (1)
Pij = −p∗δij + ε(〈xixj〉 − δij) + η(〈xixk〉ėkj + ėik〈xkxj〉); (2)

dt〈xixj〉 = 〈xjxk〉(v̇ki − αėki) + 〈xkxi〉(v̇kj − αėkj)− 2æ−1(〈xixj〉 − δij). (3)

Here Pij is the total-stress tensor, p∗ is an arbitrary scalar, 〈xixj〉 =
∫
xixjW (x, t) dv is the moment of W (x, t),

W (x, t) is the law of the probability-density distribution of friction nodes in the configuration space at the time t
(the local microscopic probability density that characterizes the medium structure), δij is the Kronecker delta, η =
0.5αεæ is the internal viscosity, which depends on the kinetic rigidity of structural elements, æ is the relaxation time
(duration of internal structural transformations after strain application/removal), and ε is the elasticity modulus
of the medium.

System (1)–(3) contains nondeviatoric excess stresses τij , or, in other words, the spur of the tensor τij is
not zero. Owing to this, the quantity p∗ here, unlike the case of classical thermodynamics, is not an independent
variable of state. In fact, this quantity should be considered as an independent mechanical variable to be determined
depending on problem conditions. That is why, we have p∗(G, t) = p + τii/3 in Eqs. (1) and (2) [5]. Here p is the
hydrostatic pressure that defines the total-stress tensor through the deviatoric tensor and τii/3 is the spur of the
tensor τij .

For a medium of constant density under adiabatic conditions of deformation, the relation for the rate of
conversion of mechanical energy into thermal energy can be represented in the form

ρCp dtT = τ1
ij v̇ij , (4)

where τ1
ij = τij − τii/3 is the deviatoric stress, T is the temperature that corresponds to the mean kinetic energy

and varies in proportion to squared diffusion velocity [1], ρ is the density, and Cp is the specific heat.
Normal stresses arise due to the fact that the medium accumulates internal energy in some elastic form of

a thermal nature. Due to this, the right-hand term in Eq. (4) is, generally speaking, the sum of dissipation and
accumulated elastic energy, for instance, in the form of some difference between normal stresses.

For the type of flows under consideration, it follows from relation (3) that the system of equations for 〈xixj〉 is

dt〈x2
1〉+ 2æ−1(〈x2

1〉 − 1) = 2〈x1x2〉G(1− 0.5α), dt〈x2
2〉+ 2æ−1(〈x2

2〉 − 1) = −〈x1x2〉αG,

dt〈x2
3〉+ 2æ−1(〈x2

3〉 − 1) = 0, dt〈x1x2〉+ 2æ−1〈x1x2〉 = 〈x2
2〉G(1− 0.5α)− 0.5αG〈x2

1〉, (5)

dt〈x2x3〉+ 2æ−1〈x2x3〉 = −0.5αG〈x1x3〉, dt〈x1x3〉+ 2æ−1〈x1x3〉 = 〈x2x3〉G(1− 0.5α).
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Fig. 1. Dependences of τ12/ε (1, 2, 3, and 8), σ1/ε (4, 5, and 9), and σ2/ε (6 and 7) on the parameter
2t/æ, calculated by formulas (8) for the case of an instantaneously applied (on the left) and then
removed (on the right) constant shear-velocity gradient: 1) æ = 0.8 and α = 10−3; 2) æ = 0.8 and
α = 10−2; 3) æ = 0.8 and α = 10−1; 4) æ = 0.8 and α = 10−1; 5) æ = 0.8 and α = 10−2; 6) æ = 0.8
and α = 10−1; 7) æ = 0.8 and α = 10−2; 8) æ = 0.4 and α = 10−1; 9) æ = 0.4 and α = 10−1.

Under the conditions 〈xixi〉 = 1 and 〈xixj〉 = 0 at t = 0, from the system of inhomogeneous differential
equations we find the components of the distribution-function moment matrix ‖〈xixj〉‖ using the method of variation
of arbitrary constants [4]:

〈x2
1〉 = 0.5b−1(A+ 2æ−1B − a+ b), 〈x2

2〉 = 0.5a−1(A+ 2æ−1B + a− b), 〈x2
3〉 = 1,

〈x2x3〉 = 〈x3x2〉 = 〈x1x3〉 = 〈x3x1〉 = 0, 〈x1x2〉 = B, (6)

A = γr1 exp (r1t) + βr2 exp (r2t), B = 2(a+ b)/(r1r2æ) + γ exp (r1t) + β exp (r2t),

r1,2 = −2æ−1 ± 2(ab)0.5, γ = −(a+ b)(1 + 2/(ær1))/(r2 − r1),

β = (a+ b)(1 + 2/(ær2))/(r2 − r1), a = G(1− 0.5α), b = −0.5αG.

Relations (6) characterize the distortions of the medium microstructure in time due to its instantaneous pertur-
bation with a uniform shear velocity. The shear affects the microstructure of the liquid and, correspondingly, the
macroscopic transfer characteristics.

In accordance with (2), the stress-tensor components ‖Pij‖ acquire the form

P11 = −p∗ + ε(〈x2
1〉 − 1)− æεb〈x1x2〉, P22 = −p∗ + ε(〈x2

2〉 − 1)− æεb〈x1x2〉,

P33 = −p∗, P12 = ε〈x1x2〉 − 0.5æεb(〈x2
1〉 − 〈x2

2〉), P23 = P13 = 0. (7)

In experiments, the normal-stress differences σ1 = P11 − P22 (first) and σ2 = P22 − P33 (second) are usually
measured, as well as the tangent shear stress τ12:

P11 − P22 = ε(〈x2
1〉 − 〈x2

2〉), P22 − P33 = ε[(〈x2
2〉 − 1)− æb〈x1x2〉], (8)

P12 ≡ τ12 = ε[〈x1x2〉 − 0.5æb(〈x2
1〉 − 〈x2

2〉)].

Figure 1 shows the calculation results obtained by formulas (8) for the case of an instantaneously applied and
then removed constant shear-velocity gradient G = 11.42 sec−1. Is it seen that the mechanical characteristics of the
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Fig. 2. Nonlinear time dependence between thermodynamic variables.

system approach their equilibrium values with their own relaxation times. The oscillatory transition regime with
decaying amplitude points to the existence of near-order correlation moments, which is typical of microstructured
fluid media.

An analysis of the results shows that the value of σ1 depends on the deviation of the medium microstructure
from its equilibrium state, whereas the value of σ2 is determined by the deviation rate. The second difference
between normal stresses depends on the kinetic rigidity of the chains; the influence of this difference is observed at
the unsteady stage of deformation only.

The introduction of an additional force f4, dependent on the rigidity of the elastic microstructure, into the
rheokinetic model exerts no effect on the most probable equilibrium state: only the rate of transition from one
configuration state into the other changes under the action of the constant shear-velocity gradient G. Thus, with
rigidity introduced into the microstructure, the entropy of its most probable state remains unchanged, and only the
rate of configuration transformations undergoes changes.

The rate of irreversible conversion of mechanical energy of the medium into its internal energy can be found
from relations (2)–(7) with α = 0.

For v̇ij ≡ G, t = 0, and T = T0 (T0 is the initial temperature), it follows from (4) that

4ρCp(T − T0)/(εæ2G2) = 2t/æ + exp (−2t/æ)− 1.

Figure 2 shows the dependence between thermodynamic variables in the form

H ≡ 1.5(p∗ − p)/(ρCp(T − T0)) = [1− exp (−2t/æ)− (2t/æ) exp (−2t/æ)][2t/æ + exp (−2t/æ)− 1]−1.

It is seen that, as the system undergoes an instantaneous perturbation with a uniform shear velocity, a nonlinear
time dependence between thermodynamic variables is observed. The response of the considered macrosystem to
mechanical and thermal perturbations depends on the time of internal structural transformations. In the region
2t/æ > 10, approximations of locally equilibrium thermodynamics are valid.
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